Sums of exponential functions having only real zeros

نویسنده

  • David A. Cardon
چکیده

Let Hn(z) be the function of a complex variable z defined by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the zeros of finite sums of exponential functions

We establish an upper bound for the number of zeros of finite sums of exponential functions defined in the set of real numbers, and then discuss some applications of this result to linear algebra. Also, we record a few questions for classroom conversations on the modifications of our theorem.

متن کامل

Exponential Sums with Real Zeros 3

Let Hn(z) be the function of a complex variable z defined by Hn(z) = ∑ G(±ia1 ± · · · ± ian)e iz(±b1±···±bn) where the summation is over all 2 possible plus and minus sign combinations, the same sign combination being used in both the argument of G and in the exponent. The numbers a1, a2, a3, . . . and b1, b2, b3, . . . are assumed to be positive, and G is an entire function of genus 0 or 1 tha...

متن کامل

Zeros of Sections of Exponential Sums

We derive the large n asymptotics of zeros of sections of a generic exponential sum. We divide all the zeros of the nth section of the exponential sum into “genuine zeros,” which approach, as n → ∞, the zeros of the exponential sum, and “spurious zeros,” which go to infinity as n → ∞. We show that the spurious zeros, after scaling down by the factor of n, approach a “rosette,” a finite collecti...

متن کامل

Zeros of Exponential Sums and Integrals

It is of frequent occurrence in problems of both pure and applied mathematics that certain values sought may be specified and must be determined as the roots of a tran-scendental equation. In particular, the equation may be of the class in which the unknown is involved only through the medium of exponential or trigonometric functions, with coefficients which are power functions or essentially s...

متن کامل

On divisibility of exponential sums of polynomials of special type over fields of characteristic 2

We study divisibility by eight of exponential sums of several classes of functions over finite fields of characteristic two. For the binary classical Kloosterman sums K(a) over such fields we give a simple recurrent algorithm for finding the largest k, such that 2 divides the Kloosterman sum K(a). This gives a simple description of zeros of such Kloosterman sums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003